From **Unsupervised Object Localization** to **Open-Vocabulary Semantic Segmentation**

Oriane Siméoni Meta FAIR (previously valeo.ai)

All works presented were done at valeo.ai

encoder

decode

Self-Supervised Learning

Learn image features with no human-made annotation using a proxy task

Self-supervised learning is great for pre-training

Data-efficiency of SSL and supervised learning methods

Efficiency in terms of number of epochs for ImageNet pretraining (SimCLR and DetCon do no use human annotated labels)

Stolen from Andrei Bursuc from ECCV'22 Tutorial: Self-Supervision on Wheels

14

But not only

Figure 1: Self-attention from a Vision Transformer with 8×8 patches trained with no supervision. We look at the self-attention of the [CLS] token on the heads of the last layer. This token is not attached to any label nor supervision. These maps show that the model automatically learns class-specific features leading to unsupervised object segmentations.

DINO [Caron et al. ICCV'21]

Supervised

DINO

- They have good localization properties
- Suffer fewer shortcuts than their fully-supervised counterparts

From

Unsupervised Object Localization to

Open-Vocabulary Semantic Segmentation

From

- **Unsupervised Object Localization** to
- **Open-Vocabulary Semantic Segmentation**

Self-attention maps

- The 6 heads attend to different parts of an image
- Without supervision hard to distinguish what is important and is an object

[CLS] self-attention maps

Head 1

Head 2

Head 3

Head 4

Head 6

Object localization in SSL similarity graph

SSL backbone

patch features (here the keys of the last layer of DINO)

Patch correlations to seed

Observations

- Features correlate semantically

Object localization in SSL similarity graph

SSL backbone

patch features (here the keys of the last layer of DINO)

Observations

- Features correlate semantically
- When compute a binary similarity graph (nodes connected if cosine similarity >0)
 - object patches are less connected than background

Patch correlations to seed

Patch **degree** low (yellow) to high (blue)

That's basically LOST [Siméoni et al., BMVC'21]

SSL backbone

patch features (here the keys of the last layer of DINO)

LOST [Siméoni et al., BMVC'21]

- Compute a binary similarity graph (nodes connected if cosine similarity >0)
- Object = patch with the lowest degree & connected correlated patches
- Additional expansion step

Patch correlations to seed

Patch degree low (yellow) to high (blue)

Initial **seed**

LOST qualitative results

Siméoni et al., Localizing Objects with Self-Supervised Transformers and no Labels, BMVC'21

LOST quantitative results

	+ 7.4	+ 8.7	+ 2.2
LOST (ours)	61.9	64.0	50.7
DINO-seg (w. ViT-S/16)	45.8	46.2	42.1
LOD [69]	53.6	55.1	48.5
rOSD [68]	54.5	55.3	48.5
DDT+ [72]	50.2	53.1	38.2
Zhang <i>et al.</i> [80]	46.2	50.5	34.8
Kim <i>et al.</i> [38]	43.9	46.4	35.1
EdgeBoxes [84]	31.1	31.6	28.8
Selective Search [65]	18.8	20.9	16.0
Method	VOC07_trainval	VOC12_trainval	COCO_20k

Corloc metric = % of correct boxes \rightarrow a predicted box is correct if has IoU>0.5 with one of gt boxes

Previous SoTA were:

- **Region proposals** method (high recall, low precision)
- Methods based on inter-image similarity: dataset exploration often with quadratic costs

Then came more powerful algorithms

TokenCut [Wang et al. CVPR'22], Deep Spectral Methods [Melas-Kyriazi et al. CVPR'22], SelfMask [Shi et al. CVPRW'22]

- Same features, similar graph
- Solve a normalized graph-cut problem
 with spectral clustering → improved localization

CutLer [Wang et al. CVPR'23]

- Detect several objects
- Remove already discovered nodes from the graph and repeat the operation

More details/discussion in our recent survey:

Unsupervised Object Localization in the Era of Self-Supervised ViTs: A Survey, Siméoni et al., IJCV'24

FOUND [Siméoni et al., CVPR'23]

- Look for the background instead of objects
- No hypotheses about objects

FOUND [Siméoni et al., CVPR'23]

- Look for the background instead of objects
- No hypotheses about objects

Background mask:

- Seed = patch receiving least attention

Siméoni et al., Unsupervised Object Localization: Observing the Background to Discover Objects, CVPR'23

FOUND [Siméoni et al., CVPR'23]

- Look for the background instead of objects
- No hypotheses about objects

Background mask:

- Seed = patch receiving least attention
- Mask = correlated patches to seed

FOUND [Siméoni et al., CVPR'23]

- Look for the background instead of objects
- No hypotheses about objects

Background mask:

- Seed = patch receiving least attention
- Mask = correlated patches to seed

FOUND = a single conv 1x1

- Trained using background masks as pseudo-labels
- Bilateral Solver (BS) used to refine masks along pixel edges

Background mask

Foreground mask

Foreground mask Predicted mask

Siméoni et al., Unsupervised Object Localization: Observing the Background to DISCover Objects, CVPR'23

Out-of-domain predictions (no post-processing)

FOUND [Siméoni et al., CVPR'23]

- **Single conv 1x1** layer trained with pseudo-labels
- Trained for 500 it. on DUTS-TR [Wang et al, CVPR17] (10k images) ~ 2h with a single GPU
- Inference at 80 FPS on a V100

Siméoni et al., Unsupervised Object Localization: Observing the Background to Discover Objects, CVPR'23

Quantitative results

		DUT-OMRON [65]			DUTS-TE [55]			ECSSD [43]		
Method	Learning	Acc	IoU	max F_{β}	Acc	IoU	max F_{β}	Acc	IoU	max F_{β}
— Without post-processing bilateral solver —										
HS [63]		.843	.433	.561	.826	.369	.504	.847	.508	.673
wCtr [73]		838	.416	.541	.835	.392	.522	.862	.517	.684
WSC [28]		.865	.387	.523	.862	.384	.528	.852	.498	.683
DeepUSPS [36]		.779	.305	.414	.773	.305	.425	.795	.440	.584
BigBiGAN [54]		.856	.453	.549	.878	.498	.608	.899	.672	.782
E-BigBiGAN [54]		.860	.464	.563	.882	.511	.624	.906	.684	.797
Melas-Kyriazi et al. [33]		.883	.509	_	.893	.528	-	.915	.713	
LOST [45] ViT-S/16 [6]		.797	.410	.473	.871	.518	.611	.895	.654	.758
DSS [34] [59]		_	.567	_		.514	_	_	.733	
TokenCut [59] ViT-S/16 [6]		.880	.533	.600	.903	576	.672	.918	712	.803
SelfMask [44]	\checkmark	.901	582	_	.923	626		.944	781	_
FOUND — single ViT-S/8 [6]	\checkmark	.920	.586	.683	.939	637	.733	.912	<u>793</u>	<u>.946</u>
FOUND — multi ViT-S/8 [6]	\checkmark	.912	.578	.663	.938	645	.715	.949	807	.955

- Inference at 80 FPS on a V100
- <1000 learned parameters

Inference FPS

Siméoni et al., Unsupervised Object Localization: Observing the Background to Discover Objects, CVPR'23

From

- **Unsupervised Object Localization** to
- **Open-Vocabulary Semantic Segmentation**

From Unsupervised Object Localization to

Open-Vocabulary Semantic Segmentation

Limits in the object localization task

Classic benchmarks Closed vocabulary setup

Limitation in the **definition** of the problem

• Requires the definition of a finite set of classes

Fully-supervised training

High costs

- Expensive in money/time to get annotation
- For each new class: need new annotation + re-training

Object detection

COCO [Lin et al. ECCV'14]

Instance segmentation

Global text/image alignment

- Powerful VLMs which align text and images
- **CLIP** [Ilharco et al. 21] trained with a **global** objective to **align** *text to images*
 - \rightarrow great zero-shot classification

However, going **from global to dense pixel** classification is **not obvious**

- very noisy (MaskCLIP [Zhou et al. ECCV'22]),
- require training (TCL [Cha et al. CVPR'23],
 CLIPpy [Ranasinghe et al. ICCV'23]), extra annotation, etc..

MaskCLIP: pixel-level CLIP-like features

MaskCLIP [Zhou et al. ECCV'22]

- No training
- Drops the global pooling layer of CLIP
- Matches the projected features directly to text via a 1×1 convolution layer.

Any way to leverage SSL?

MaskCLIP: pixel-level CLIP-like features

CLIP-DINOiser [Wysoczanska et al., ECCV'24]

- Idea: Strengthen **MaskCLIP** using SSL correlation

- Idea: Strengthen **MaskCLIP** using SSL correlation
- Guided pooling = weighted average of pixel features
 - weights = SSL correlations
 - only correlation > threshold

CLIP-DINOiser [Wysoczanska et al., ECCV'24]

- Idea: Strengthen MaskCLIP using SSL correlation
- Guided pooling = weighted average of pixel features
 - weights = SSL correlations
 - only correlation > threshold

Teaching CLIP a first DINO trick

CLIP-DINOiser [Wysoczanska et al., ECCV'24]

- Idea: Strengthen MaskCLIP using SSL correlation
- Guided pooling = weighted average of pixel features
 - weights = SSL correlations
 - only correlation > threshold

- Teach CLIP a first trick

- Single conv3x3 trained to produce features w/ correlations alike DINO's
- Trained with a BCE
- ~40 mins on 1 NVIDIA A5000 and 1.5k images (PASCAL VOC train)

CLIP already contains good localization properties

Teaching CLIP a first DINO trick

CLIP-DINOiser [Wysoczanska et al., ECCV'24]

- Idea: Strengthen MaskCLIP using SSL correlation
- Guided pooling = weighted average of pixel features
 - weights = SSL correlations
 - only correlation > threshold

Teach CLIP a first trick

 Single conv3x3 trained to produce features w/ correlations alike DINO's

Teaching CLIP a first DINO trick

CLIP-DINOiser [Wysoczanska et al., ECCV'24]

- Idea: Strengthen **MaskCLIP** using SSL correlation
- Guided pooling = weighted average of pixel features
 - weights = SSL correlations
 - only correlation > threshold
- Teach CLIP a first trick
 - Single conv3x3 trained to produce features w/ correlations alike DINO's

CLIP-DINOiser [Wysoczanska et al., ECCV'24]

- Idea: Strengthen MaskCLIP using SSL correlation
- Guided pooling = weighted average of pixel features
 - weights = SSL correlations
 - only correlation > threshold
- Teach CLIP a first trick
 - Single conv3x3 trained to produce features w/ correlations alike DINO's

CLIP-DINOiser [Wysoczanska et al., ECCV'24]

- Idea: Strengthen MaskCLIP using SSL correlation
- Guided pooling = weighted average of pixel features
 - weights = SSL correlations
 - only correlation > threshold
- Teach CLIP a first trick
 - Single conv3x3 trained to produce features w/ correlations alike DINO's

- Teach CLIP a second trick
 - Foreground segmentation w/ conv1x1 trained to mimic FOUND

CLIP-DINOiser [Wysoczanska et al., ECCV'24]

- Idea: Strengthen MaskCLIP using SSL correlation
- Guided pooling = weighted average of pixel features
 - weights = SSL correlations
 - only correlation > threshold
- Teach CLIP a first trick
 - Single conv3x3 trained to produce features w/ correlations alike DINO's
- Teach CLIP a second trick
 - Foreground segmentation w/ conv1x1 trained to mimic FOUND

CLIP-DINOiser [Wysoczanska et al., ECCV'24]

- Idea: Strengthen MaskCLIP using SSL correlation
- Guided pooling = weighted average of pixel features
 - weights = SSL correlations
 - only correlation > threshold
- Teach CLIP a first trick
 - Single conv3x3 trained to produce features w/ correlations alike DINO's
- Teach CLIP a second trick
 - Foreground segmentation w/ conv1x1 trained to mimic FOUND

CLIP-DINOiser [Wysoczanska et al., ECCV'24]

- Idea: Strengthen **MaskCLIP** using SSL correlation
- Guided pooling = weighted average of pixel features
 - weights = SSL correlations
 - only correlation > threshold
- Teach CLIP a first trick
 - Single conv3x3 trained to produce features w/ correlations alike DINO's
- Teach CLIP a second trick
 - Foreground segmentation w/ conv1x1 trained to mimic FOUND

CLIP-DINOiser's qualitative results

CLIP-DINOiser's qualitative results

CLIP-DINOiser's qualitative results

rusted van green trees clouds mountains rench pastries sky sports car
wooden table strange turtle
plate city water

white horse dark horse leather bag
vintage bike

Going further

A Study of Test-time Contrastive Concepts for Open-world, Open-vocabulary Semantic Segmentation

Monika Wysoczańska^{1*} Antonin Vobecky^{2,3,4} Amaia Cardiel^{2,8}

Tomasz Trzciński^{1,5,6} Renaud Marlet^{2,7} Andrei Bursuc² Oriane Siméoni²

¹Warsaw University of Technology ²valeo.ai ³CIIRC CTU Prague ⁴FEE CTU Prague ⁵Tooploox ⁶IDEAS NCBR ⁷LIGM, Ecole des Ponts, Univ Gustave Eiffel ⁸Université Grenoble Alpes

Rethink the **evaluation paradigm** of the open-vocabulary semantic segmentation: new metric and removing access to an exhaustive set of classes

Oriane Siméoni @Self Supervised Learning: What is Next Workshop - ECCV'24

Where do we go from here?

Why do we like self-supervision?

- It requires **no annotation**
- Learns strong representation
 - For pre-training
 - Good localization properties
- No need to know the end task (often ill-defined)
- Not impacted by annotation biases
- Can be exploited at little cost eg. with cheap convolutional layers
- Localization of objects is possible and **classes can come later**

Remaining challenges

- How to handle the ill-definition of an object?
- Multi-instance?
- Handling granularity?
- Different representation for end usage/tasks?

